Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Nat Commun ; 15(1): 2619, 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38521764

RESUMO

Immunity to infectious diseases is predominantly studied by measuring immune responses towards a single pathogen, although co-infections are common. In-depth mechanisms on how co-infections impact anti-viral immunity are lacking, but are highly relevant to treatment and prevention. We established a mouse model of co-infection with unrelated viruses, influenza A (IAV) and Semliki Forest virus (SFV), causing disease in different organ systems. SFV infection eight days before IAV infection results in prolonged IAV replication, elevated cytokine/chemokine levels and exacerbated lung pathology. This is associated with impaired lung IAV-specific CD8+ T cell responses, stemming from suboptimal CD8+ T cell activation and proliferation in draining lymph nodes, and dendritic cell paralysis. Prior SFV infection leads to increased blood brain barrier permeability and presence of IAV RNA in brain, associated with increased trafficking of IAV-specific CD8+ T cells and establishment of long-term tissue-resident memory. Relative to lung IAV-specific CD8+ T cells, brain memory IAV-specific CD8+ T cells have increased TCR repertoire diversity within immunodominant DbNP366+CD8+ and DbPA224+CD8+ responses, featuring suboptimal TCR clonotypes. Overall, our study demonstrates that infection with an unrelated neurotropic virus perturbs IAV-specific immune responses and exacerbates IAV disease. Our work provides key insights into therapy and vaccine regimens directed against unrelated pathogens.


Assuntos
Coinfecção , Vacinas contra Influenza , Influenza Humana , Infecções por Orthomyxoviridae , Vírus , Camundongos , Animais , Humanos , Influenza Humana/patologia , Linfócitos T CD8-Positivos , Coinfecção/patologia , Receptores de Antígenos de Linfócitos T , Pulmão/patologia
2.
Science ; 382(6674): 1073-1079, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38033053

RESUMO

Skin-resident CD8+ T cells include distinct interferon-γ-producing [tissue-resident memory T type 1 (TRM1)] and interleukin-17 (IL-17)-producing (TRM17) subsets that differentially contribute to immune responses. However, whether these populations use common mechanisms to establish tissue residence is unknown. In this work, we show that TRM1 and TRM17 cells navigate divergent trajectories to acquire tissue residency in the skin. TRM1 cells depend on a T-bet-Hobit-IL-15 axis, whereas TRM17 cells develop independently of these factors. Instead, c-Maf commands a tissue-resident program in TRM17 cells parallel to that induced by Hobit in TRM1 cells, with an ICOS-c-Maf-IL-7 axis pivotal to TRM17 cell commitment. Accordingly, by targeting this pathway, skin TRM17 cells can be ablated without compromising their TRM1 counterparts. Thus, skin-resident T cells rely on distinct molecular circuitries, which can be exploited to strategically modulate local immunity.


Assuntos
Linfócitos T CD8-Positivos , Memória Imunológica , Células T de Memória , Pele , Linfócitos T CD8-Positivos/imunologia , Células T de Memória/imunologia , Pele/imunologia , Humanos , Células Th17/imunologia , Ligante Coestimulador de Linfócitos T Induzíveis/metabolismo , Proteínas Proto-Oncogênicas c-maf/metabolismo , Interleucina-7/metabolismo
3.
Immunity ; 56(7): 1664-1680.e9, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37392736

RESUMO

Memory CD8+ T cells can be broadly divided into circulating (TCIRCM) and tissue-resident memory T (TRM) populations. Despite well-defined migratory and transcriptional differences, the phenotypic and functional delineation of TCIRCM and TRM cells, particularly across tissues, remains elusive. Here, we utilized an antibody screening platform and machine learning prediction pipeline (InfinityFlow) to profile >200 proteins in TCIRCM and TRM cells in solid organs and barrier locations. High-dimensional analyses revealed unappreciated heterogeneity within TCIRCM and TRM cell lineages across nine different organs after either local or systemic murine infection models. Additionally, we demonstrated the relative effectiveness of strategies allowing for the selective ablation of TCIRCM or TRM populations across organs and identified CD55, KLRG1, CXCR6, and CD38 as stable markers for characterizing memory T cell function during inflammation. Together, these data and analytical framework provide an in-depth resource for memory T cell classification in both steady-state and inflammatory conditions.


Assuntos
Linfócitos T CD8-Positivos , Células T de Memória , Camundongos , Animais , Linhagem da Célula , Memória Imunológica
4.
Nat Immunol ; 23(8): 1236-1245, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35882933

RESUMO

Tissue-resident memory T cells (TRM cells) provide rapid and superior control of localized infections. While the transcription factor Runx3 is a critical regulator of CD8+ T cell tissue residency, its expression is repressed in CD4+ T cells. Here, we show that, as a direct consequence of this Runx3-deficiency, CD4+ TRM cells lacked the transforming growth factor (TGF)-ß-responsive transcriptional network that underpins the tissue residency of epithelial CD8+ TRM cells. While CD4+ TRM cell formation required Runx1, this, along with the modest expression of Runx3 in CD4+ TRM cells, was insufficient to engage the TGF-ß-driven residency program. Ectopic expression of Runx3 in CD4+ T cells incited this TGF-ß-transcriptional network to promote prolonged survival, decreased tissue egress, a microanatomical redistribution towards epithelial layers and enhanced effector functionality. Thus, our results reveal distinct programming of tissue residency in CD8+ and CD4+ TRM cell subsets that is attributable to divergent Runx3 activity.


Assuntos
Memória Imunológica , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Fator de Crescimento Transformador beta/metabolismo
5.
Cytometry A ; 101(11): 922-941, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35349225

RESUMO

Understanding the complex elements affecting signal resolution in cytometry is key for quality experimental design and data. In this study, we incorporate autofluorescence as a contributing factor to our understanding of resolution in cytometry and corroborate its impact in fluorescence signal detection through mathematical predictions supported by empirical evidence. Our findings illustrate the critical importance of autofluorescence extraction via full spectrum unmixing in unmasking dim signals and delineating the expression and subset distribution of low abundance markers in discovery projects. We apply our findings to the precise definition of the tissue and cellular distribution of a weakly expressed fluorescent protein that reports on a low-abundance immunological gene. Exploiting the full spectrum coverage enabled by Aurora 5L, we describe a novel approach to the isolation of pure cell subset-specific autofluorescence profiles based on high dimensionality reduction algorithms. This method can also be used to unveil differences in the autofluorescent fingerprints of tissues in homeostasis and after immunological challenges.


Assuntos
Algoritmos , Corantes , Imunofenotipagem
6.
Sci Adv ; 8(9): eabj4641, 2022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-35245124

RESUMO

Circulating Ly6Chi monocytes often undergo cellular death upon exhaustion of their antibacterial effector functions, which limits their capacity for subsequent macrophage differentiation. This shrouds the understanding on how the host replaces the tissue-resident macrophage niche effectively during bacterial invasion to avert infection morbidity. Here, we show that proliferating transitional premonocytes (TpMos), an immediate precursor of mature Ly6Chi monocytes (MatMos), were mobilized into the periphery in response to acute bacterial infection and sepsis. TpMos were less susceptible to apoptosis and served as the main source of macrophage replenishment when MatMos were vulnerable toward bacteria-induced cellular death. Furthermore, TpMo and its derived macrophages contributed to host defense by balancing the proinflammatory cytokine response of MatMos. Consequently, adoptive transfer of TpMos improved the survival outcome of lethal sepsis. Our findings hence highlight a protective role for TpMos during bacterial infections and their contribution toward monocyte-derived macrophage heterogeneity in distinct disease outcomes.


Assuntos
Infecções Bacterianas , Sepse , Animais , Citocinas , Humanos , Macrófagos , Camundongos , Camundongos Endogâmicos C57BL , Monócitos
7.
J Exp Med ; 219(1)2022 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-34677611

RESUMO

Tissue-resident memory T (TRM) cells provide long-lasting immune protection. One of the key events controlling TRM cell development is the local retention of TRM cell precursors coupled to downregulation of molecules necessary for tissue exit. Sphingosine-1-phosphate receptor 5 (S1PR5) is a migratory receptor with an uncharted function in T cells. Here, we show that S1PR5 plays a critical role in T cell infiltration and emigration from peripheral organs, as well as being specifically downregulated in TRM cells. Consequentially, TRM cell development was selectively impaired upon ectopic expression of S1pr5, whereas loss of S1pr5 enhanced skin TRM cell formation by promoting peripheral T cell sequestration. Importantly, we found that T-bet and ZEB2 were required for S1pr5 induction and that local TGF-ß signaling was necessary to promote coordinated Tbx21, Zeb2, and S1pr5 downregulation. Moreover, S1PR5-mediated control of tissue residency was conserved across innate and adaptive immune compartments. Together, these results identify the T-bet-ZEB2-S1PR5 axis as a previously unappreciated mechanism modulating the generation of tissue-resident lymphocytes.


Assuntos
Diferenciação Celular/genética , Tecido Linfoide/metabolismo , Células T de Memória/metabolismo , Receptores de Esfingosina-1-Fosfato/genética , Linfócitos T/metabolismo , Animais , Linfócitos T CD8-Positivos/metabolismo , Movimento Celular/genética , Células Cultivadas , Perfilação da Expressão Gênica/métodos , Humanos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , RNA-Seq/métodos , Receptores de Esfingosina-1-Fosfato/metabolismo , Proteínas com Domínio T/genética , Proteínas com Domínio T/metabolismo , Homeobox 2 de Ligação a E-box com Dedos de Zinco/genética , Homeobox 2 de Ligação a E-box com Dedos de Zinco/metabolismo
8.
Eur J Immunol ; 51(12): 2708-3145, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34910301

RESUMO

The third edition of Flow Cytometry Guidelines provides the key aspects to consider when performing flow cytometry experiments and includes comprehensive sections describing phenotypes and functional assays of all major human and murine immune cell subsets. Notably, the Guidelines contain helpful tables highlighting phenotypes and key differences between human and murine cells. Another useful feature of this edition is the flow cytometry analysis of clinical samples with examples of flow cytometry applications in the context of autoimmune diseases, cancers as well as acute and chronic infectious diseases. Furthermore, there are sections detailing tips, tricks and pitfalls to avoid. All sections are written and peer-reviewed by leading flow cytometry experts and immunologists, making this edition an essential and state-of-the-art handbook for basic and clinical researchers.


Assuntos
Doenças Autoimunes/imunologia , Citometria de Fluxo , Infecções/imunologia , Neoplasias/imunologia , Animais , Doença Crônica , Humanos , Camundongos , Guias de Prática Clínica como Assunto
9.
Nat Immunol ; 22(9): 1140-1151, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34426691

RESUMO

Tissue-resident memory T (TRM) cells are non-recirculating cells that exist throughout the body. Although TRM cells in various organs rely on common transcriptional networks to establish tissue residency, location-specific factors adapt these cells to their tissue of lodgment. Here we analyze TRM cell heterogeneity between organs and find that the different environments in which these cells differentiate dictate TRM cell function, durability and malleability. We find that unequal responsiveness to TGFß is a major driver of this diversity. Notably, dampened TGFß signaling results in CD103- TRM cells with increased proliferative potential, enhanced function and reduced longevity compared with their TGFß-responsive CD103+ TRM counterparts. Furthermore, whereas CD103- TRM cells readily modified their phenotype upon relocation, CD103+ TRM cells were comparatively resistant to transdifferentiation. Thus, despite common requirements for TRM cell development, tissue adaptation of these cells confers discrete functional properties such that TRM cells exist along a spectrum of differentiation potential that is governed by their local tissue microenvironment.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Diferenciação Celular/imunologia , Plasticidade Celular/imunologia , Microambiente Celular/imunologia , Memória Imunológica/imunologia , Animais , Antígenos CD/imunologia , Linfócitos T CD8-Positivos/citologia , Feminino , Cadeias alfa de Integrinas/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de Sinais/imunologia , Fator de Crescimento Transformador beta1/metabolismo
10.
Nat Commun ; 12(1): 4355, 2021 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-34272362

RESUMO

Mucosal-associated Invariant T (MAIT) cells are recognized for their antibacterial functions. The protective capacity of MAIT cells has been demonstrated in murine models of local infection, including in the lungs. Here we show that during systemic infection of mice with Francisella tularensis live vaccine strain results in evident MAIT cell expansion in the liver, lungs, kidney and spleen and peripheral blood. The responding MAIT cells manifest a polarised Th1-like MAIT-1 phenotype, including transcription factor and cytokine profile, and confer a critical role in controlling bacterial load. Post resolution of the primary infection, the expanded MAIT cells form stable memory-like MAIT-1 cell populations, suggesting a basis for vaccination. Indeed, a systemic vaccination with synthetic antigen 5-(2-oxopropylideneamino)-6-D-ribitylaminouracil in combination with CpG adjuvant similarly boosts MAIT cells, and results in enhanced protection against both systemic and local infections with different bacteria. Our study highlights the potential utility of targeting MAIT cells to combat a range of bacterial pathogens.


Assuntos
Citocinas/metabolismo , Francisella tularensis/imunologia , Imunidade Inata , Células T Invariantes Associadas à Mucosa/imunologia , Adjuvantes Imunológicos , Animais , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/imunologia , Fígado/imunologia , Pulmão/imunologia , Camundongos , Camundongos Knockout , Antígenos de Histocompatibilidade Menor/genética , Antígenos de Histocompatibilidade Menor/imunologia , Células T Invariantes Associadas à Mucosa/metabolismo , Fenótipo , RNA-Seq , Ribitol/análogos & derivados , Ribitol/imunologia , Análise de Célula Única , Baço/imunologia , Células Th1/imunologia , Células Th1/metabolismo , Transcriptoma/genética , Uracila/análogos & derivados , Uracila/imunologia , Vacinas Atenuadas/imunologia
11.
Methods Mol Biol ; 2308: 151-161, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34057722

RESUMO

Hematopoiesis is a central process and is essential for the replenishment of short-lived leukocytes such as neutrophils. However, the molecular events underlining the developmental transition of quiescent hematopoietic stem cells into downstream progenitors and mature blood cells are not completely understood. Here, we describe the intrafemoral delivery of hematopoietic progenitors as a method to trace their development and differentiation lineage patterns within the bone marrow (BM) niche. Unlike other approaches, the direct adoptive transfer of progenitors into the BM cavity does not require prior irradiation preconditioning of recipient mice, and enables the delivery of lower cell numbers into the marrow space in a minimally perturbed environment. As a demonstrative example, we provide a protocol for the isolation of granulocyte-monocyte progenitors (GMP) by cell sorting, the delivery of these cells into recipient animals by intrafemoral transfer, and finally, the analysis of GMP-derived progenies by flow cytometry.


Assuntos
Medula Óssea/fisiologia , Diferenciação Celular , Linhagem da Célula , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/fisiologia , Nicho de Células-Tronco , Animais , Separação Celular , Citometria de Fluxo , Células-Tronco Hematopoéticas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fenótipo
12.
Blood ; 137(20): 2770-2784, 2021 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-33512478

RESUMO

Dendritic cells (DCs) encompass several cell subsets that collaborate to initiate and regulate immune responses. Proper DC localization determines their function and requires the tightly controlled action of chemokine receptors. All DC subsets express CXCR4, but the genuine contribution of this receptor to their biology has been overlooked. We addressed this question using natural CXCR4 mutants resistant to CXCL12-induced desensitization and harboring a gain of function that cause the warts, hypogammaglobulinemia, infections, and myelokathexis (WHIM) syndrome (WS), a rare immunodeficiency associated with high susceptibility to the pathogenesis of human papillomavirus (HPV). We report a reduction in the number of circulating plasmacytoid DCs (pDCs) in WHIM patients, whereas that of conventional DCs is preserved. This pattern was reproduced in an original mouse model of WS, enabling us to show that the circulating pDC defect can be corrected upon CXCR4 blockade and that pDC differentiation and function are preserved, despite CXCR4 dysfunction. We further identified proper CXCR4 signaling as a critical checkpoint for Langerhans cell and DC migration from the skin to lymph nodes, with corollary alterations of their activation state and tissue inflammation in a model of HPV-induced dysplasia. Beyond providing new hypotheses to explain the susceptibility of WHIM patients to HPV pathogenesis, this study shows that proper CXCR4 signaling establishes a migration threshold that controls DC egress from CXCL12-containing environments and highlights the critical and subset-specific contribution of CXCR4 signal termination to DC biology.


Assuntos
Células Dendríticas/fisiologia , Inflamação/patologia , Doenças da Imunodeficiência Primária/fisiopatologia , Receptores CXCR4/fisiologia , Verrugas/fisiopatologia , Alphapapillomavirus/genética , Animais , Benzilaminas/farmacologia , Contagem de Células , Diferenciação Celular , Quimiocina CXCL12/fisiologia , Quimiotaxia , Ciclamos/farmacologia , Células Dendríticas/classificação , Epiderme/patologia , Feminino , Técnicas de Introdução de Genes , Genes Virais , Humanos , Inflamação/metabolismo , Células de Langerhans/fisiologia , Tecido Linfoide/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos , Camundongos Transgênicos , Especificidade de Órgãos , Parabiose , Doenças da Imunodeficiência Primária/sangue , Doenças da Imunodeficiência Primária/genética , Doenças da Imunodeficiência Primária/patologia , Proteínas Recombinantes/metabolismo , Verrugas/sangue , Verrugas/genética , Verrugas/patologia
13.
Immunity ; 53(2): 303-318.e5, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32579887

RESUMO

Granulocyte-monocyte progenitors (GMPs) have been previously defined for their potential to generate various myeloid progenies such as neutrophils and monocytes. Although studies have proposed lineage heterogeneity within GMPs, it is unclear if committed progenitors already exist among these progenitors and how they may behave differently during inflammation. By combining single-cell transcriptomic and proteomic analyses, we identified the early committed progenitor within the GMPs responsible for the strict production of neutrophils, which we designate as proNeu1. Our dissection of the GMP hierarchy led us to further identify a previously unknown intermediate proNeu2 population. Similar populations could be detected in human samples. proNeu1s, but not proNeu2s, selectively expanded during the early phase of sepsis at the expense of monocytes. Collectively, our findings help shape the neutrophil maturation trajectory roadmap and challenge the current definition of GMPs.


Assuntos
Células Precursoras de Granulócitos/citologia , Monócitos/citologia , Mielopoese/fisiologia , Neutrófilos/citologia , Animais , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Análise de Célula Única
14.
Nat Immunol ; 21(8): 914-926, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32424363

RESUMO

Adoptive cell therapies using genetically engineered T cell receptor or chimeric antigen receptor T cells are emerging forms of immunotherapy that redirect T cells to specifically target cancer. However, tumor antigen heterogeneity remains a key challenge limiting their efficacy against solid cancers. Here, we engineered T cells to secrete the dendritic cell (DC) growth factor Fms-like tyrosine kinase 3 ligand (Flt3L). Flt3L-secreting T cells expanded intratumoral conventional type 1 DCs and substantially increased host DC and T cell activation when combined with immune agonists poly (I:C) and anti-4-1BB. Importantly, combination therapy led to enhanced inhibition of tumor growth and the induction of epitope spreading towards antigens beyond those recognized by adoptively transferred T cells in solid tumor models of T cell receptor and chimeric antigen receptor T cell therapy. Our data suggest that augmenting endogenous DCs is a promising strategy to overcome the clinical problem of antigen-negative tumor escape following adoptive cell therapy.


Assuntos
Células Dendríticas/imunologia , Imunoterapia Adotiva , Proteínas de Membrana/imunologia , Neoplasias Experimentais/imunologia , Linfócitos T/imunologia , Animais , Antígenos de Neoplasias/imunologia , Humanos , Fatores Imunológicos , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos Quiméricos/imunologia
17.
Sci Immunol ; 4(36)2019 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-31227596

RESUMO

The role of nonclassical monocytes (NCMs) in health and disease is emerging, but their location and function within tissues remain poorly explored. Imaging of NCMs has been limited by the lack of an established single NCM marker. Here, we characterize the immune checkpoint molecule PD-L1 (CD274) as an unequivocal marker for tracking NCMs in circulation and pinpoint their compartmentalized distribution in tissues by two-photon microscopy. Visualization of PD-L1+ NCMs in relation to bone marrow vasculature reveals that conversion of classical monocytes into NCMs requires contact with endosteal vessels. Furthermore, PD-L1+ NCMs are present in tertiary lymphoid organs (TLOs) under inflammatory conditions in both mice and humans, and NCMs exhibit a PD-L1-dependent immunomodulatory function that promotes T cell apoptosis within TLOs. Our findings establish an unambiguous tool for the investigation of NCMs and shed light on their origin and function.


Assuntos
Antígeno B7-H1/imunologia , Monócitos/imunologia , Músculos Abdominais/imunologia , Animais , Anticorpos/farmacologia , Medula Óssea/imunologia , Feminino , Fêmur , Imunoglobulina G/imunologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Linfócitos T/imunologia
18.
Immunity ; 50(2): 390-402.e10, 2019 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-30709741

RESUMO

Neutrophils eliminate pathogens efficiently but can inflict severe damage to the host if they over-activate within blood vessels. It is unclear how immunity solves the dilemma of mounting an efficient anti-microbial defense while preserving vascular health. Here, we identify a neutrophil-intrinsic program that enabled both. The gene Bmal1 regulated expression of the chemokine CXCL2 to induce chemokine receptor CXCR2-dependent diurnal changes in the transcriptional and migratory properties of circulating neutrophils. These diurnal alterations, referred to as neutrophil aging, were antagonized by CXCR4 (C-X-C chemokine receptor type 4) and regulated the outer topology of neutrophils to favor homeostatic egress from blood vessels at night, resulting in boosted anti-microbial activity in tissues. Mice engineered for constitutive neutrophil aging became resistant to infection, but the persistence of intravascular aged neutrophils predisposed them to thrombo-inflammation and death. Thus, diurnal compartmentalization of neutrophils, driven by an internal timer, coordinates immune defense and vascular protection.


Assuntos
Vasos Sanguíneos/imunologia , Ritmo Circadiano/imunologia , Neutrófilos/imunologia , Fagocitose/imunologia , Animais , Vasos Sanguíneos/metabolismo , Candida albicans/imunologia , Candida albicans/fisiologia , Células Cultivadas , Senescência Celular/imunologia , Quimiocina CXCL2/imunologia , Quimiocina CXCL2/metabolismo , Interações Hospedeiro-Patógeno/imunologia , Humanos , Inflamação/imunologia , Inflamação/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Infiltração de Neutrófilos/imunologia , Neutrófilos/metabolismo , Neutrófilos/microbiologia , Receptores CXCR4/imunologia , Receptores CXCR4/metabolismo , Fatores de Tempo
19.
Bioinformatics ; 35(2): 301-308, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-29931307

RESUMO

Motivation: Recent flow and mass cytometers generate datasets of dimensions 20 to 40 and a million single cells. From these, many tools facilitate the discovery of new cell populations associated with diseases or physiology. These new cell populations require the identification of new gating strategies, but gating strategies become exponentially more difficult to optimize when dimensionality increases. To facilitate this step, we developed Hypergate, an algorithm which given a cell population of interest identifies a gating strategy optimized for high yield and purity. Results: Hypergate achieves higher yield and purity than human experts, Support Vector Machines and Random-Forests on public datasets. We use it to revisit some established gating strategies for the identification of innate lymphoid cells, which identifies concise and efficient strategies that allow gating these cells with fewer parameters but higher yield and purity than the current standards. For phenotypic description, Hypergate's outputs are consistent with fields' knowledge and sparser than those from a competing method. Availability and implementation: Hypergate is implemented in R and available on CRAN. The source code is published at http://github.com/ebecht/hypergate under an Open Source Initiative-compliant licence. Supplementary information: Supplementary data are available at Bioinformatics online.


Assuntos
Separação Celular/métodos , Biologia Computacional , Citometria de Fluxo , Linfócitos/citologia , Humanos , Imunidade Inata
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA